

Solution Concentration

2) Expressing concentrations in parts per million (ppm) requires the unit on top to be 1,000,000 times smaller than the unit on the bottom
E.g. $1 \mathrm{mg} / \mathrm{kg}$ or $\mu \mathrm{g} / \mathrm{g}$

- Multiples of 1000 are expressed in this order $\mu_{-}, \mathrm{m}_{-},{ }^{\prime}, \mathrm{k}$ _ ("_" is the base unit) (pg.631)
- Notice that any units expressed as a volume must be referring to a water solution ($1 \mathrm{~L}=1 \mathrm{~kg}$)
- For parts per billion (ppb), the top unit would have to be 1,000,000,000 times smaller

3) Molar concentration is the most commonly used in chemistry. Ensure that units are mol/L.

Solution Concentration
Read 281-283. Try questions 1-8 (show work)
Concentration = quantity of solute
quantity of solution (not solvent)
There are 3 basic ways to express concentration:

1) percentages, 2) very low concentrations, and 3) molar concentrations
2) \% concentration can be in V/V, W/W, or W/V

- Like most $\% \mathrm{~s}$, V/V and W/W need to have the same units on top and bottom.
- W / V is sort of in the same units; V is mostly water and water's density is $1 \mathrm{~g} / \mathrm{mL}$ or $1 \mathrm{~kg} / \mathrm{L}$ $3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} / 100 \mathrm{~mL}$ solution $\approx 3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} / 100 \mathrm{~g}$ solution

More practice

1. What is the $\%$ W/W of copper in an alloy when 10 g of Cu is mixed with 250 g of Zn ?
2. What is approximate $\% \mathrm{~V} / \mathrm{V}$ if 30 mL of pure ethanol is added to 250 mL of water?
3. What is the $\% \mathrm{~W} / \mathrm{W}$ if 8.0 g copper is added to enough zinc to produce 100 g of an alloy?

Read 284-287. Do Q 11-17 (show work)

