\qquad

Potential Energy Diagrams and Kinetics

Part I-

Directions: Use the potential energy diagram for the reaction $X+Y \rightarrow Z$ to complete the chart below.

Letter	Term	Description

Part II-

Directions:

1. Draw a potential energy diagram for an endothermic reaction.
2. Label your drawing with the following letters:
$A=P E$ of products
D=Energy of activation
$B=P E$ of reactants
$\mathrm{E}=$ Heat of reaction
$\mathrm{C}=\mathrm{PE}$ of the activated complex

Letter	Term	Description
\mathbf{A}	PE of Reactants	The combined amounts of the potential energy of the reactants.
\mathbf{B}	PE of the Activated Complex	The potential energy of the activated complex.
\mathbf{C}	Activation Energy	The amount of energy required to form the activated complex.
\mathbf{D}	Heat of the Reaction	The amount of energy given off (or absorbed if it was endothermic) in the reaction.
\mathbf{E}	PE of the Products	The potential energy of the product.

Graph 2

1. Draw a potential energy diagram for an endothermic reaction.
2. Label your drawing with the following letters:
$\mathrm{A}=\mathrm{PE}$ of products
$\mathrm{D}=$ Energy of activation
$\mathrm{B}=\mathrm{PE}$ of reactants $\mathrm{E}=$ Heat of reaction
$\mathrm{C}=\mathrm{PE}$ of the activated complex

