Name	e:
Per:_	Date:
For th	Quiz 4A: The Concept of the Mole the following equation: $\frac{2}{2}H_2 + \frac{1}{2}O_2 \rightarrow \frac{2}{2}H_2O$
1.	and the second
-	many moles of O2 do 1 haves
	1 liter H20 x 1 mole H20 x 102 = 0.022 moles 02
2.	If I have 0.052 mol of H ₂ O, how many mol of H ₂ are used?
	0.052 mol HzOx 2 Hz = [0.052 mol Hz]
	7p / 7p / 7p
3.	How many moles of O ₂ are needed to make 5.0 moles of H ₂ O?
	$\frac{5.0 \text{mol H}_2 0}{1} \times \frac{102}{2 \text{mol H}_2 0} = 2.50 \text{mol } 0_2$
	To To
4.	How many moles of H ₂ are-reacted-with O ₂ to form 10.0 moles of H ₂ O?
	10 mol H ₂ 0? 2 H ₃ $= 1000000000000000000000000000000000000$

Name:
Per: Date:
Quiz 4B: The Concept of the Mole
For the following questions, use the following equation: $\frac{2}{2}H_2 + \frac{1}{2}O_2 \rightarrow \frac{2}{2}H_2O$
1. If I have 10 liters of water, how many moles of O₂ do I have?
10 liters H_2O_X 1 mole H_2O_X 1 O_2 = 0.22 mole O_2 22.4 L H_2O_2 2 H_2O_3 7 pts. 2. If I have 0.250 mol of H_2O_2 , how many mol of H_2 are used?
$0.250 \text{ mol H}_20_{\chi} \frac{2H_2}{2H_20} = 0.250 \text{ mol H}_2$ $7pts. \qquad 7pts.$ 3. How many moles of O_2 are needed to make 15.0 moles of H_2O ?
15.0 mole H_2O_X $\frac{162}{2} = \frac{15.0}{2} = \frac{7.5 \text{ mole } O_2}{2}$ $\frac{1}{2} + \frac{1}{2}O_Z = \frac{15.0}{2} = \frac{7.5 \text{ mole } O_2}{2}$ 4. How many moles of H_2 are reacted with O_2 to form 12.0 moles of H_2O ?
12 moles 4.0, 2 H2 112, 111

$$\frac{12 \text{ moles H}_2O_{\text{X}}}{1} = \frac{2 \text{ H}_2O}{2 \text{ H}_2O} = \frac{12 \text{ moles H}_2}{12 \text{ moles H}_2}$$

$$\frac{1}{12 \text{ moles H}_2O_{\text{X}}} = \frac{12 \text{ moles H}_2O_{\text{X}}}{12 \text{ moles H}_2O_{\text{X}}} = \frac{12 \text$$

Name:
Per: Date:
Quit 4C: The Concept of the Mole
For the following questions, use the following equation: $\frac{1}{1} N_2 + \frac{3}{2} H_2 \rightarrow \frac{2}{1} NH_3$
1. If I have 1 liter of ammonia, how many moles of N₂ do I have?
1 liter NH3 x 1 mole NH3 x 1 N2 = 0.022 mol N2
2. If I have 0.052 mol of NH ₃ , how many mol of H ₂ are used?
$\frac{0.052 \text{ NH}_3 \times \frac{3 \text{ Hz}}{2 \text{ NH}_3 \text{ I}} = \left[0.078 \text{ mole Hz}\right]}{7 \text{ pt}}$
3. How many moles of N₂ are needed to make 5.0 moles of NH₃?
5.0 mole NH3 x 1 N2 = [2.5 mol N2] 7pt. 7pt. 7pt.
4. How many moles of H ₂ a re reacted with N₂ to form 10.0 moles of NH₃?
10 moles NH3 x 3H2 = 15 mole H2

Tpt.

Tpt.

·7pt.

	×
Name	::
Per:	Quiz 4D: The Concept of the Mole
or the	e following questions, use the following equation: $\frac{1}{1} N_2 + \frac{3}{2} H_2 \rightarrow \frac{2}{1} N_3$
1.	If I have 12 liters of ammonia, how many moles of N₂ do I have?
,	$\frac{12 \text{ liters NH3}}{1} \times \frac{1 \text{ mol NH3}}{22.4 \text{ L. NH3}} \times \frac{1 \text{ N}_2}{2 \text{ NH3}} = \boxed{0.268 \text{ mole N}}$
2.	If I have 0.056 mol of NH ₃ , how many mol of H ₂ are used?
	$0.056 \text{ NH}_{3} \times \frac{3 \text{ H}_{2}}{2 \text{ NH}_{3}} = \boxed{0.084 \text{ mol H}_{2}}$
3.	How many moles of H ₂ are needed to make 12.06 moles of NH ₃ ?
	12.06 NH ₃ $\times \frac{3H_2}{2NH_3} = 18.09 \text{ mole Hz}$ How many moles of N ₂ are reacted with H ₂ to form 8 moles of NH ₃ ?
	8 mol NH3 x - IN2 = 4 moles Nz